干式變壓器鐵心溫度監(jiān)測解決方案

智能電網(wǎng)中, 電力變壓器已成為不可缺少的裝備。變壓器的運(yùn)行直接影響人們的生產(chǎn)生活。為更好地檢測變壓器的狀態(tài), 需對(duì)變壓器進(jìn)行可控檢測。變壓器的壽命長短主要取決于絕緣能力。變壓器的實(shí)際運(yùn)行中, 變壓器的溫度影響其絕緣能力, 因此通過檢測變壓器溫度推斷變壓器的壽命。變壓器運(yùn)行時(shí), 鐵心溫度可直接反應(yīng)內(nèi)部溫度, 因此急需一種能夠準(zhǔn)確檢測鐵心溫度的檢測方法。

目前, 檢測鐵心溫度的方法主要分為3種, 熱模擬測量法、間接計(jì)算測量法及直接測量法。使用熱模擬測量法測量繞組溫度因簡單而被廣泛使用, 但模擬過程和溫升過程誤差較大, 導(dǎo)致預(yù)測結(jié)果不能精準(zhǔn)反應(yīng)繞組溫度。間接計(jì)算法來測量繞組溫度簡化了變壓器的熱特性分布, 計(jì)算簡單且具有一定精度, 但計(jì)算結(jié)果會(huì)受繞組熱點(diǎn)的影響。使用直接測量法直接測量繞組溫度能準(zhǔn)確反應(yīng)變壓器內(nèi)部的溫度變化趨勢(shì)。直接測量法主要包括電信號(hào)傳感器測試法、紅外測溫測試法及光纖測溫測試法。

使用電信號(hào)傳感器測量法直接測量變壓器內(nèi)部溫度, 但電信號(hào)傳感器壽命短, 受電磁影響大, 測試結(jié)果不能準(zhǔn)確反應(yīng)內(nèi)部溫度。紅外測溫測試法使用紅外線測試, 但易受電磁影響, 且不能及時(shí)將測試結(jié)果傳回, 無法實(shí)現(xiàn)實(shí)時(shí)監(jiān)測功能。光纖測溫測量法由于測量精度高而得到廣泛應(yīng)用。但該方法應(yīng)用于變壓器測溫時(shí), 只能根據(jù)經(jīng)驗(yàn)來放置光纖傳感器, 從而造成測溫點(diǎn)數(shù)量少和測溫點(diǎn)分布不均勻等問題。

針對(duì)目前直接測量法存在的測溫點(diǎn)數(shù)量少、測試點(diǎn)分布不均及不能實(shí)時(shí)傳輸測量結(jié)果等問題, 本文提出一種基于光纖光柵傳感器的變壓器卷鐵心溫度監(jiān)測方法。此方法可提高目前的變壓器內(nèi)部溫度檢測水平, 增加變壓器的使用壽命, 減少變壓器故障率。

1 光柵傳感器原理

光纖光柵傳感器 (Fiber Grating Sensor) 是一種波長調(diào)制型光纖傳感器, 通過外界物理參量對(duì)光纖布拉格 (Bragg) 波長的調(diào)制來獲取傳感信息。光纖光柵傳感器具有抗電磁干擾、電絕緣性能好、體積小及傳輸損耗小等優(yōu)點(diǎn)。

光纖光柵具有熱光效應(yīng)和熱膨效應(yīng), 將會(huì)直接影響光纖光柵的溫度特性。當(dāng)光纖光柵發(fā)生熱光效應(yīng)時(shí), 對(duì)應(yīng)光柵的有效折射率將會(huì)產(chǎn)生改變。如果光柵的柵格周期發(fā)生變化, 就表明光纖光柵發(fā)生了熱膨效應(yīng)。如果溫度和布拉格波長發(fā)生變化, 就表明熱光效應(yīng)和熱膨效應(yīng)均在光纖光柵上產(chǎn)生。

光纖光柵不僅能測量溫度, 還能測量應(yīng)變。光纖光柵的應(yīng)變特性主要受彈性效應(yīng)和彈光效應(yīng)影響。彈性效應(yīng)會(huì)對(duì)光纖光柵的柵格周期產(chǎn)生重要影響, 而彈光效應(yīng)會(huì)改變光纖光柵傳感器的有效折射率。

2 設(shè)計(jì)方法

基于光纖光柵傳感器的鐵心溫度監(jiān)測系統(tǒng)主要分為傳感器嵌入變壓器、溫度檢測系統(tǒng)及傳感器傳輸系統(tǒng)。

2.1 溫度檢測系統(tǒng)

傳統(tǒng)溫度檢測具有測溫難、測溫點(diǎn)少及測試方法抗干擾能力弱等問題。因此, 本研究提出了將光纖光柵傳感器嵌入變壓器鐵心的方法, 通過光纖光柵傳感器采集溫度數(shù)據(jù), 并傳輸采集信號(hào)。由于光纖光柵傳感器尺寸小, 抗干擾能力強(qiáng), 能在高溫高壓環(huán)境下正常工作, 所以完全可嵌入到變壓器內(nèi)部。首先采用光纖預(yù)拉伸工具對(duì)光纖光柵進(jìn)行預(yù)拉伸, 然后對(duì)操作后的光纖進(jìn)行鍍金。由于光纖光柵傳感器具有溫度特性和應(yīng)變特性, 為提高光纖光柵傳感器的測量精度, 需減小應(yīng)變特性的影響, 并改善熱膨系數(shù)來提升靈敏度。由于鋁合金的熱膨系數(shù)高, 所以可以通過剛性焊接技術(shù)將光纖光柵傳感器和鐵心的鋁合金基底進(jìn)行結(jié)合, 從而提升光纖光柵傳感器的測量性能。使用工具對(duì)鐵心的背面進(jìn)行開槽工作, 槽的大小適中, 不影響鐵心的正常運(yùn)行。銅扁線包紙過程中, 采用引導(dǎo)裝置將光纖引入銅扁線所開設(shè)的小槽中, 同時(shí)預(yù)留光纖尾纖, 用于引出傳感信號(hào)。

2.2 傳感器傳輸系統(tǒng)

本研究采用波分復(fù)用技術(shù)和空分復(fù)用技術(shù)? 。波分復(fù)用技術(shù)是在一根光纖上讓兩種或者多種信號(hào)均通過不同信道進(jìn)行傳輸, 且互相不受影響。這種傳輸方式可使光纖傳輸更多信息??辗謴?fù)用技術(shù)是將多根光纖進(jìn)行合并, 共同組成多個(gè)信道且每個(gè)信道相互獨(dú)立, 信號(hào)在對(duì)應(yīng)信道上進(jìn)行傳輸。通過采用波分復(fù)用技術(shù)和空分復(fù)用技術(shù), 可使有限光纖最大化傳輸信息, 能有效解決變壓器內(nèi)部測溫點(diǎn)少的問題。首先通過光纖光柵傳感器采集檢測數(shù)據(jù), 然后傳輸?shù)浇庹{(diào)儀, 解調(diào)儀將波長信號(hào)轉(zhuǎn)換為數(shù)字信號(hào), 計(jì)算機(jī)接受信號(hào)后并顯示實(shí)時(shí)檢測結(jié)果。

為解決變壓器測溫難和測溫點(diǎn)少的問題, 本文提出了一種基于光纖光柵傳感器的變壓器卷鐵心溫度監(jiān)測方法。將光纖光柵傳感器嵌入變壓器鐵心, 采用空分復(fù)用和波分復(fù)用的方法將傳感器信息傳入解調(diào)儀, 解調(diào)儀將波長信號(hào)轉(zhuǎn)換為數(shù)字信息并傳入計(jì)算機(jī), 實(shí)現(xiàn)實(shí)時(shí)監(jiān)控的功能。仿真結(jié)果表明, 與ESSM測量法、ITM測量法及FOTM測溫法相比, 本文提出的FGCTM測量法能有效提高變壓器內(nèi)部溫度的檢測精度。由于光纖光柵傳感器具有體積小、抗電磁干擾能力強(qiáng)及絕緣性好等優(yōu)點(diǎn), 能持續(xù)完成高密封度、高壓設(shè)備的實(shí)時(shí)溫度監(jiān)測, 所以可應(yīng)用于其他溫度檢測。

轉(zhuǎn)載

關(guān)鍵詞:

光纖聯(lián)系